COMX 35/PC-

ASS

=

R MANUAL

INTRODUCTION TO ASSEMBLY PROGRAMMING

R & D Dept.,
COMX World Operations ltd.

CHAPTER 1
INTRODUCTION
What is machine language

Machine lanqusge is the lowest level computer lanqguage.
It ““is “the only *kind of ‘Tanguage which a Centrael Processing
Unit (CPU) can interpret. Machine lanquage is & series of
machine codes. These machine codes develope the motion of &
GRS According to different machines codes, CPU does
different kinds of work, such as addition and subtraction.
Each CPU has its own group of machines codes. One group of
these <codes 1is called an instruction set. The CPU of COMX
35/PC=1 is RCA CDPP1B02 and the instruction set wused 1is
CDP1802 instruction set.

Machine codes &are in fact some binary codes having
special meaning. Each code stand for a specified CPU motion.
By chaining up a sequence of these codes, CPU can process
many different kinds of work. Even large and compliceated
task can be done in this way.

Why use assembly language

Machine codes are meaningless to human beings. They are
only meaningful to CPU. Since memorizing a series of
meaningless code 1is difficult, some simple text is used
instead of the machine codes. They are called "mnemonics".
Each mnemonic stand for one machine code. From the text of =&
mnemonic, the meaning of the corresponding code can be
estimated. Mnemonics composed a higher level language called
"assembly languege'". Assembly language is more rational and
is easier to be understood by human beings. Progrems written
in assembly language are called "assembly programs".

Fig. 1.2 Machine codes are meaningless to human
beings.

Use of assembler

Assembly programs contain a series of mnemonics. These
mnemonics must be converted into manchine codes before the
program is executed. Assembler is the tool which convert
assembly programs into machine codes. Moreover, according to
assembler's limitetion, some comments, labels and optional
commands can be added to assembly programs. These optional
materials made assembly programming easier and more
systematic.

ASSEMBLER

ﬁé’
=4

Fig. 1.3 Programming is made easier and more
systematic with the help of assembler.

What happens in COMX 35/PC-1

The assembler of COMX 35/PC-1 is COMX 1802 Assembler.
Other than the genereal festures, COMX 1802 Assembler also
provide logical and arithmatical operation, pseudo
directives and macro instructions. To develop & mechine code
program, an assembly program should be developed first. This
program must follow the COMX 1802 Assembler syntax rules.
1802 Assembler. The program can be writtenm using COMXSTAR,
the COMX's word processor. After converted by assembler, a
series of machine codes will be generated. They will be
saved to disk in text form. This text form machine code file
is called HEX file.

In order to execute the program, the
converted into binary codes. This job is
Loader. COMX Loader losed e HEX file and
binary codes. The codes may be filled in

HEX file must be
done by the COMX
convert it into
RAM or saved to

disk. When binary form machine codes are filled in RAM, the

program can be executed.

COMPUTER

BINARY
GODE

ZASSEMBLER\

g

GOMSTAR

)

gily
/DISK /I/ LOADER :\ nAM\
i

Fig. 1.4 How COMX 35/PC-1 works.

2.1

CHAPTER 2

EXAMPLE
Here is an example showing how & machine code program
can be developed.
Source
T ;
: RACT $1234 FROM $4321 ASSEMBLY
ULT PRINT ON SCREEN LANGUAGE
REGISTER LABEL
EQU 2
s o SUBREUTENE IeABEL
BUTPUT sERE 520EH
::: MAIN PROGRAM
ORG 5000H
START aSEX 5P
EpL 24H '
M :SUBTRACT LOW BYTE
STXD sPHUSH LOW RESULT
LDI 43H
SMBI 12H :SUBTRACT HIGH BYTE
CALL OUTPUT :PRINT RESULT HIGH BYTE
IRX ; LDX :PULL LOW RESULT
CALL CUTPUT :PRINT RESULT LOW BYTE
EXIT :RETURN TO BASIC
END
This program performs a subtraction of two L6 - Bits
numbers, $4321 and $1234. The result will be printed on
screen.
Procedures :
2.2.1 Develope the assemlby program
Key in the above source program using COMXSTAR.
Form & text file called "EXAMPLE".
2.2.2 Assemble the assembly program
Use COMX 1802 Assembler to assemble the source
file into a HEX file called "EXAMPLE.H".
Steps are shown below
Note : Words underlined stand for text input.

Words in small letter are explanations.

READY
:tDOSURUN, "ASM2" run COMX 1802 Assembler

A5M1802 VERSION 1.0 eassembler activated
BY COMX WORLD OPERATIONS LTD.
SOURCE~EILE ¢CPN.~; DR NO. s OPTIONS):

SEXAMPLE a6 input source file name
select HEX file option

HEX . BIFE-CEN. ., BR.ND)
>EXAMPLE.H,1 input HEX file name

DESTINATION:

1 5C, 2 PR, PR & SC, 4 TH, 5 TH & SC

6 DK, 7 BK & SC, B NO DEST

>8 no Dest file

READY assembling finished

Form binary codes

Use COMX Loader to convert the HEX file into
binary codes.

Steps are shown below

Note : Words underlined stand for text input.
Words in small letter are explanastions.

READY
:DOSURUN,"LOADER" run COMX Loader
COMX LOADER VERSION 1.0 COMX Loader activated

COMX WORLD OPERATIONS LTD.,1985 (C)

SOURCE FILE NAME (FN,DR):
>EXAMPLE .H,1 input HEX file name

SELECTE DESTINATION TYPE:
1.DISK 2.RAM 3.RAM & DISK
22 select fill codes in RAM

READY loading process finished

The machine code progrem is now loaded in RAM.

Fig. 2.2 Run the program.

2.3 Run the program
Steps are shown below

Note : Words underlined stand for text input.
Words in small letter are explanations.

READY

:CALL (m5000) run the program
30ED program result
READY program finished

SOURCE
ASSEMBLER
LOADER
plie
RAM < 2 [
@ \:"C' “l';.
Fig. 2.3 Run the program "EXAMPLE.H".

COMX 35/PC-1

ASSEMBLER MANUAL

By : Charles Wong

Date : Adugust 1, 1985
COMX World Operations Ltd.
R & D Department

Approved by : Edmond Leung

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Chapter
Appendix

Appendix

~]

A

B

Table of Contents

IntroﬁUCtion ® # 0 8 8 B SF S S PSS S S S ST EE e O e

System ArChitecture ® 8 9 6 & 8 6 S B8 S S PSS O e C O S e eSS e eSS

Text InpUt Format ® ® 0 8 0P 000 S SO S 06 S S S0P P S ORS00 S

Mnemonics LR B B B R T I I IR I I I T T I R S R I Y

PSEUdO InStrUCtions ® & 9 ® S ¢ O 0 B S LS 0SB E LSS e S e e

DirECtives ® & 8 9 " 00 P e S e S eSS S E O SE S S s S s e PSS e e e e e RS

Assembler Listing and Error Message

® 8 o ® 0 000800

"'ASCII COdE Table e s 00 0000 ® 2 2880800008080 e0e0eeeas

- Example Assembly Program Listing

® & ® ¢ e e o0 0000

P.20
P.24

P25

CHAPTER 1

INTRODUCTION

—— e

General concept:

The COMX 1802 Assembler is a two pass assembler. All the
tables including the symbol table, pseudo instruction
table (for MCASE, MIF, MLOOP) and directive table (for
conditional assembling) are generated in pass one. If table
or memory is full, the assembling will be aborted. According
to the wuser's selected option, the hex code files and/or
list files will be generated on disk, to printer or thermal
printer and/or on screen.

How to call the Assembler?
After generated the text file to be assembled, the user can

type: 'DOSURUN,"ASM2"', then the following information will
be displayed on the screen.

SOURCE FILE (FN. , DR. NO. ; OPTIONS):
>

- In the displayed statement, "FN." stands for source file

name, "DR. NO." stands for disk drive number (- otf - 2) ,
"OPTIONS" stands for the options including G, H, W, D, X and
L, which will be described in details later. The delimiter
between two options is a space.

If the H option 1is selected, the following statement
will be displayed, where "FN." stands for file name to be
created for the hex. file, "DR. NO." stands for disk drive
number. The default drive number is drive 1.

HEX. FILE (FN. , DR. NO.)
>

The following statement will be displayed after the above
question or the first question (if H option was not
selected) has been answered.

DESTINATION:
1 8C, 2 PR, 3 PR & SC, 4 TH, 5 TH & SC
6 DK, 7 DK & SC, 8 NO DEST

SC: SCREEN; PR: PRINTER; TH: THERMAL PRINTER; DK: DISK
NO DEST: NO DESTINATION

Page 1

I1f 6 or 7 of the destinations is selected, another question
which is shown below will be displayed on the screen,
otherwise, the input text will be assembled.

DESTINATION FILE (FN. ,DR. NO):
>

The destination file name and disk drive number should be
filled, Ff wo.. drige nbomber . i1s filled, drive 1 will be
assumed.,
Options:

G: Generate all codes: Prints all lines of codes generated
by pseudo=-instructions and general instructions.

L: Prints out all lines assembled.

H: Generates hex. file

X: Prints out symbol table entries

W number: sets the max. Width (column number) per page in
the listing.(Do not set the width in excess of
132, otherwise, the default wvalue 8¢ will be

assumed.

D number: Page Depth- Sets the number of 1lines per listing
page including headings and blank lines.

Page 2

CHAPTER 2

SYSTEM ARCHITECTURE

D - — —— —————

Registers

CDP18@2 register summary:

D 8 Bits D Register (Accumulator)

DF 1 /Bt Data Flag (ALU Carry)

R 16 Bits 1 to 16 Scratchpad Registers

| 4 Bits Designates which register is Program Counter
X 4 Bits Designates which register is Data Pointer

N 4 Bits Low-order Instruction Nibble

I 4 Bits High-order Instruction Nibble

T 8 Bits Holds o0ld X, P after Interrupt

IE 1 -BiE Interrupt Enable

Q 1, Bit Qutput Flip-flop

Interrupt Action: X and P are stored in T after executing

current instruction; designator P is set to 1; designator X
is set to 2; interrupt enable is reset to # (inhibit); and
the interrupt request is serviced.

DMA Action: Finish executing current instruction. R(%)
points to memory area for data transfer; data is loaded into
or read out of memory; and increment R (8).

Note: In the event of concurrent DMA and INTERRUPT reguests,
DMA has priority.

External Flags: Four one-bit Flags set externally and tested
by some branching instructions.

Page 3

Registers used by the operating system and Assembler

Register

Register

Register

Register

Register

Register

Register

Register

%}

1

: contains the vector address of DMA.

contains the vector address of Interrupt
request,

is used as stack pointer by the system in
general case. The stack pointer can also be
redefined by the user.

is used as program counter by the system in
general case. The PC can also be redefined by
the user.

contains the entry address of the routine for
the Assembler instruction "CALL".

contains the entry address of the routine for
the Assembler instrucion "EXIT".

contains the returning address of the current
executing subroutine.

to Register 15 can be used by the users.

Page 4

CHAPTER 3

TEXT INPUT FORMAT

INTRODUCTION

Before wusing the assembler, the designated text source file
must have been generated. The input format must obey some
rules specified by the assembler.

This chapter will cover the input formats of the constant,
operands (expressions), output port and label system etc..

Assembler Input Format

Each 1line 1is a text string terminated by an end-of-line
(return) character. The line can have one to five fields:

1. an optional label field

2. an operation field

3. an operand field for some operations

4. an operation delimiter(;), then follows another 2 & 3.
NOTE: 2, 3, 4 can be repeated in one text line.

5. an optional comment field
(: as the prefix of the comment)

There are also two special cases: if the first character of
a 1line is a colon, the entire line will be considered to be
a comment which is printed in the listing but will not be
otherwise processed. If the line contains only an an end-of-
line character, it will be ignored and a blank 1line is
printed on the listing. The maximum length of an input line
is 8¢ characters. Any character after the 8#th character
will be ignored.

The Label Field

The label field begins at the first character ©position of
the 1line. Labels <can be either optional (instructions) or
required (EQU). Lines with a space in the first character
position are considered to have no label.

Page 5

The label must be a legal symbol name consisting of one to
Six uppercase or lowercase characters, decimal digits, or
the characters " " or ".", however the first character must
be a letter. Labels (and names in general) must be unique,
ie., they cannot be defined more than once.

Label is assigned a 16-bit value depending on the 1line's
operation field. 1Instructions and most constant=definition
operations cause the label to have the value of the program
address of the first byte generated for the line. Labels on
EQU operation is given the value of the result of evaluation
of the operand field. Label on 'DS' operation is normally
given the value of the program address counter.

Operation Field

This field follows the label field and must be separated by
oneé or more spaces. It must contain the mnemonic name of
1802 instructions, a "pseudo-instruction", or an assembler
directive. The assembler accepts instructions in vuppercase
or lowercase characters.

The pseudo-instructions also generate code.

Operand Field

The operand field follows, and must be separated by at least
one space from the operation field.

There are two kinds of operand, constant (number or pre-=
defined label) and expression (numbers and/or predefined
symbols which is operated and given the result)

More than one instruction (operation+ operand) can be put
in the same line, a delimiter ";" 1s needed to separated
each instruction. Therefore operation field and operand
field can be repeated in one line.

Comment Field

The last field of the source statement is the optional
comment field. The contents of this field is not translated
into obiject «code, rather it is copied to the program

listing. There must be a prefix ": to start the comment
field.

Page 6

More about the operand field

Operands of many instructions and assembler directives can
include numeric expressions in one or more places. The
assembler can process expressions of almost any complexity
using a format similar to algebraic notation used in
programming languvage such as BASIC. All operands and
operators vsed signed or unsigned 16-bit binary integers in
the range of @ to 65535 for unsigned numbers, or =32768 to
+32767 for signed numbers. In some cases, expressions are
expected to return a byte value of @ to 255 (such as in 8-
bit register instructions). Parentheses can be used to alter
the natural order of evaluation.

3.7.1 Expression operands

Decimal number: optional minus sign and one to five
digit.

Hexdecimal number: one to four hexdecimal characters
(=9 and A-F) followed by a
character H the first character
must be @ to 9, if not a dummy @
is needed.

Binary number: one to sixteen binary gigits (0 or 1)
followed by a character B.

Octal number: one to 8 octal characters (@=7)
followed by a character 0.

Instruction ceounter: dollar sign "$" represents the
current program instruction
counter wvalue.

Symbolic name: one to six characters: A-Z, a=z, @=9,
. or _. However, the first character
cannot be a digit . and _

3.7.2 ASSEMBLER Operators by order of evaluation

1 * multiplication / division
2. + addition - subtraction
3 = equal < smaller > greater <> not equal
>= greater or equal <= smaller or equal
4. & logical AND ! logical OR
logical XOR " one's compliment

Page 7

3.7.3

Symbolic Name

Name are defined when first used as a label on
an instruction or directive statement. They
must be defined exactly once in the program.
I1f a name is redefined (used as label more
than once) an error message 1is printed on
every definition.

Symbolic name are stored with their associated
type and value in an assembler data structure
called "symbol table", which occupies most of
the assembler's memory space. About 1@K of
memory is used as symbol table. Each entry in
the table requires 9 bytes, so up to 1130
names can be used in one assembly program.

Page 8

CHAPTER 4

MNEMONICS

4.1 Contrel Instructions

opP

code syntax name

pe IDL 8 i B

C4 NOP NO OPERATION
DN SEP reg SET P

EN SEX reg SET X

7B SEQ SR 0

TA REQ RESET 0O

I8 SAV SAVE

79 MARK PUSH X, P TO STACK
70 RET RETURN

71 DIS DISABLE

4,2 Memory Reference

oP

Code Syntax

ON LDN reg
4N LDA reg
Fd LDX

T2 LDXA

F8 EDT expr
5N STR reg
73 STXD

Name

LOAD VIAN

LOAD ADVANCE
LOAD VIAX

LOAD VIAX AND
ADVANCE

LOAD IMMEDIATE
STORE VIAN
STORE VIA X AND
DECREMENT

action

WAIT FOR DMA OR INTERRUPT;
M(R(@))-->BUS
CONTINUE

N==>P

Ne==>X

1=-=>0

B==>0

T==>M (R (X))
(X,P)==>T;

(X PY==>M(R(2));
THEN P==>X;R(2)-1
MRAEX)) =2 (X, P);
R(X)+1;1-=->1E
MUBRA A) == Ry P);
R(X)+1.0=-=>1E

Action

M(R(N))==>D; FOR N NOT @
M(R(N))==>D;R(N)+1
M(R(X))}==>D
M(R(X))==>D; R(X)+1

D==>M (R (N))

D==>M(RX));R(X)=1

Page 9

4.3 Register QOperations

OP

Code Syntax Name

1IN INC reg INCREMENT REG N
2N DEC reg DECREMENT REG N
60 IRX INCREMENT REG X
8N GLO reg GET LOW REG N
AN PLO reg PUT LOW REG N
9N GHI reg GET HIGH REG N
BN PHI reg PUT HIGH REG N

4.4 Logic Operations**

OoP
Code Syntax Name
El OR OR
F9 ORI expr OR IMMEDIATE
F3 XOR EXCLUSIVE OR
FB XRI expr EXCLUSIVE OR
IMMEDIATE
F2 AND AND
FA ANI expr AND IMMEDIATE
F6 SHR SHIFT RIGHT
76 .SHRC SHIFT RIGHT WITH
CARRY
-RSHR RING SHIFT RIGHT
FE SHL SHIES REPT
7E .SHLC SHIFT LEFT WITH
CARRY
«RSHL RING SHIFT LEFT

4.5 Arithmetic Operations**

oP

Code Syntax Name

F4 ADD ADD

FC ADI expr ADD IMMEDIATE

74 ADC ADD WITH CARRY

7C ADCI expr ADD WITH CARRY,
IMMEDIATE

ES SD SUBTRACT D

Action

R(N)+1
R(N)=-1
R{X)+1
R(N) .@==>D
D==->R(N) .0
R(N}.1==>D
D==->R(N) .1

X)) OR D==>D

P)) OR D==>;R(P)+1
M(R(P)) XOR D==>D

P)) XOR D=-=>D;R(P)+1
M(R(X)) AND D==>D
M(R(P)) AND D==>D;R(P)+1
SHIFT D RIGHT,
LSB(D)=-=->DF,@=-=>MSB (D)
SHIFT D RIGHT,
LSB (D) =-->DF,DF==>MSB (D)

SHIFT D LEFT,
MSB (D) ==>DF , 8-==>LSB (D)
SHIFT D LEFT,

MSB (D) ==>DF,DF==>LSB (D)
SHIFT D LEFT,

MSB (D) ==>DF,DF-->LSB (D)

Action

M(R(X))+D==>DF,D
M(R(P))+D==>DF,D;R(P)+1
M(R(X))+D+DF==>DF,D
M(R(P))+D+DF==>DF,D;
R(P)+1
M(R(X))=D==>DF,D

Page 10

FD SDI
15 SDB
7D SbB1
E7 SM
FF SMI1
77 SMB
7E SMBI
4.6 Short
OoP

expr

expr

expr

expr

Branch

Code Syntax

39
38

32
3A

33

3B

34
39
34
3C
35

3D

BR
. NBR

BZ
BNZ

. BDF
.BPZ

.BGE

.BNF
«BM

+BL
.BQ

.BND
- Bl
BN1
B2

BNZ2

expr
expr

expr

expr

expr
expr

exXpr

expr
expr

expr
expr

expr
expr
expr
expr

expr

SUBTRACT D
IMMEDIATE
SUBTRACT D WITH
BURROW

SUBTRACT WITH
BURROW IMMEDIATE
SUBTRACT MEMORY
SUBTRACT MEMORY
IMMEDIATE
SUBTRACT MEMORY
WITH BURROW
SUBTRACT MEMORY
BPRROW IMMEDIATE

Name

SHORT BRANCH

NO SHORT BRANCH
(SEE SKP)

SHORT BRANCH 1I1F
D=8

SHORT BRANCH 1F
D NOT @

SHORT BRANCH IF
SHORT BRANCH IF
POS OR ZERO
SHORT BRANCH 1IF
GREATER OR EQUAL
SHORT BRANCH IF
SHORT BRANCH IF
MINUS

SHORT BRANCH 1F LESS

SHORT BRANCH 1IF
Q=1 '
SHORT BRANCH 1IF
Q=0

SHORT BRANCH 1IF
EFi=1

SHORT BRANCH 1F
EFi1i=0

SHORT BRANCH 1F
EF2=1

SHORT BRANCH 1IF
EF2=0

M(R(P))-D=-=>DF,D;

B{P)*1

M(R(X))=D=(NOT DF)-=-=>DF,
D;R(P)+1

M(R(P))=D= (NOT DF)=-=>DF,
D;R(P)+1

D-M (R (X))=-=>DF,D

D=M (R (P)) ==>DF,D;

R(P)+1

D=M (R (X)) = (NOT DF)-=>DF,D

D-M(R(P))= (NOT DF)=-=>DF,
D;R(P)+1

Aotion

MR (P))<=~ R-(P) D
RtiE)+1

IF D= ,M(R(P))@ ELSE
R(P)+1

IF D NOT @.M(R(P))==>
R(P) @ ELSE R(P)+1

IF DF=1,M(R(P))=-=>(P)@
ELSE R(P)+1

IF DF=@ ,M(R(P))==>R(P) @
ELSE R(P)+1

IP Q=1,M(R(R) }-—>R(P) &
ELSE R(P)+1

1F 0=0,M(R(P)) @

ELSE R(P)+1

IF EF1=1,M(R(P))==>R(P) @
ELSE R(P)+1

1F DF1=pg,M(R(P)) @

ELSE R(P)+1

IF EF2=1,M(R(P))==>R(P) @
ELSE R(P)+1

IF EF2=8,M(R(P))==>R(P) @
ELSE R(P)+1

Page 11

36 B3 expr
3E BN3 expr
37 B4 expr

3F BN4 expr

4.7 Long Branch

OoP
Code Syntax

co LBR expr
C8 .NLBR expr

G2z LBZ expr

CA LBNZ expr

C3 LBDF expr

CB LBNF expr

C3 LBNQ expr

co LBNQ expr

SHORT BRANCH
EF3=1
SHORT BRANCH
EF3=0
SHORT BRANCH
EF4=1
SHORT BRANCH
EF4=p

Name

LONG BRANCH

155

1z

IF

I¥

NO LONG BRANCH

(SEE LSKP)
LONG BRANCH

LONG BRANCH
D NOT @

LONG BRANCH
DF=1

LONG BRANCH

DF=0
LONG BRANCH

LONG BRANCH

4.8 Skip Tnstructlrons

OoP

Code Syntax
38 .SKP

Cc8 « LSKP
CE LSZ

Cé6 LSNZ

Name

SHORT SKIP
(SEE NBR)
LONG SKIP
(SEE NLBR)
LONG SKIP IF

LONG SKIP IF
D NOT @

IF D=0

LE

1F

TE

IF Q=1

IF Q=0

D=§

1F EF3=1,M(R(P))=-=>R(P) @
ELSE R(P)+1
IF EF3=0,M(R(P))=-=->R(P) ©
ELSE R(P)+1
1IF EF4=1,M(R(P))=-=->R(P) @
ELSE R{P)+1
1IF EF4=¢ ,M(R(P))==->R(P) @
ELSE R(P)+1

ActEion
M(R(P))==>R(P) .1;
M(R(P)+1)==>R(P) .0
R(P)+2

IF D=¢,M(R(P))==>R(P).1;
M(R(P)+1)==>R(P) .@;

ELSE R(P)+2

1F D NOT @,M(R(P))==>
R(P).1;M(R(P)+1)==>R(P) .0
ELSE R(P)+2

IF DF=1,M(R(P))==>R(P) .1;
M(R(P)+1)==>R(P) .0;

ELSE R(P)+2

IF DF=@,M(R(P))==>R(P) .1;
ELSE R(P)+2

IF Qg=1,M(R(P))==>R(P).1;
M(R(P)+1)==>R(P) .0;

ELSE R(P)+2

IF Q=¢,M(R(P))==>R(P).1;
M(R(P)+1)==>R(P) .0;

ELSE R(P)+2

Action

R(P)+1

R(P)+2

IF D=@,R(P)+2;ELSE
CONTINUE

IF D NOT @,R(P)+2;ELSE
CONTINUE

Page 12

CF LSDF LONG SKIP 1F DBF=1 IF DF=1,R(P)+2;ELSE

CONTINUE
c7 LSNF LONG SKIP IF DF=0 IF DF=0,R(P)+2;ELSE
CONTINUE
CD LSO LONG SKIP 1IF Q=1 IF Q=1,R(P)+2;ELSE
CONTINUE
C5 LSNQ LONG SKIP IF Q=@ IF Q=0 ,R(P)+2;ELSE
CONTINUE
CC LSTE LONG SKIP IF 1E=1 IF 1E=1,R(P)+2;ELSE
CONTINUE
4.9 Input=-Qutput Byte Transfer
oP
Code Syntax Name Action
6N ouT dev OUTPUT M{R(X))==>BUS;R(X)+1;
FOR N=1 TO 7
6N INP dev INPUT BUS==->M(R (X)) ; BUS=-=>D;
FOR N=9 TO F
NOTES:
N A HEX DIGIT
reg A HEX DIGIT,"R" FOLLOWED BY A HEX DIGIT, OR A SYMBOLIC
NAME .
dev "1" THROUGH "7" OR A SYMBOLIC NAME IN THAT RANGE.
expr A CONSTANT,".", OR A SYMBOLIC NAME POSSIBLY PLUS ("+") OR
MINUS ("-=") A CONSTANT.
. THIS INSTRUCTION IS ASSOCIATED WITH MORE THAN ONE
MNEMONIC.
EACH MNEMONIC IS INDIVIDUALLY LISTED.
.o THE ARITHMETIC OPERATIONS AND THE SHIFT INSTRUCTIONS ARE

THE ONLY INSTRUCTIONS THAT CAN ALTER THE DF.

AFTER AN ADD INSTRUCTION;
DF=1 DENOTES A CARRY HAS OCCURRED
DF=@ DENOTES A CARRY HAS NOT OCCURRED

AFTER A SUBTRACT INSTRUCTION:
DF=1 DEOTES NO BORROW;D IS A TRUE POSITIVE NUMBER
DF=¢ DENOTES A BORROW;D 1S TWO'S COMPLEMENT
THE SYNTAX - (NOT DF) DENOTES THE SUBTRACTION OF THE
BURROW

Page 13

CHAPTER 5

PSEUDO INSTRUCTIONS

INTRODUCTION

"Pseudo-instructions"” are special assembler statements that
generate object code but do not correspond to actual CDP
1882 machine instructions. Their primary purpose is to
Create special sequences of constant data to be included in
the program. Labels are optional on pseudo-instructions. The
other special purpose of pseuvdo-instructions in this
assembler 1is to generate some machine codes to do 16-bit
operations and macro-nesting operations.

DC and DW Statements

The Declare Constant and Declare Word pseudo-instructions
generate sequences of single (DC) and double (DW) constants
within the program. The operand is a list of one or more
expressions which are evaluvated and output as constants. 1If
more than one constant is to be generated, the expressions
are separated by commas. DC will truncate the high byte if
any of 1its expressions is a value of more than 255. If DW
evalvates an expression with a value of less than 256, the
high order-byte will be zero.

Example:

dc 1,206,42h

DC 5,01012191B,30H

DW 30 ,2000H,99H

dw 5,0101010191018181b,508h

DM Statement

This psuedo-instruction generate a series of bytes
corresponding to a string of characters given as operand.
The output bytes are the literal numeric value of each ASCII
character in the string.

The operand string must be enclosed by delimters before the
first character and after the last character. The characters
that may be wused for delimiters are: / and ". Both
delimiters must be the same character and cannot be included
in the string itself.

Example:
DM / you are programmers./

dm " I WRITE A PROGRAM."
Page 14

Pseuvdo-instructions that do 16-bit operations

LDR regli,reg2: load data M(R(regl)) into reg2
content of regl unchanged

LDRA regl,reg2: load data M(R(regl)) into reg2
content of regl increased by 2

LDRI data,reg: locad immediate data into reg;
where data can be an expression

STD regl,reg2: store data in regl into M(R(reg2));
content of reg2 unchanged

STDA regl,reg2: store data in regl into M(R(reg2));
content of reg2 increased by 2

STDA1l data,reg: store immediate data into M(R(reg));
content of reg increased by 2

STD1 data,reg: store immediate data into M(R(reg));
content of reg unchanged

TFR regl,reg2: transfer content in regl to reg?2

CALL and EXIT instructions

In the procedure of system initialization, a vector address
of the entry point for the program which performs "call
subroutine"™ is put into R4. In the same manner, a vector
address for < "return from suvbroutine™ is put into RS.
Therefore, CALL 1is equivalent to SEP R4 and EXIT is
equivalent to SEP R5.

PSHS and PULS instructions

Assume resgister 2 is stack peinter.

Format:

PSHS regl,reg2...,regn
PULS regl,reg2...,regn

PSHS : push registers onto stack. Stack pointer is vupdated &
peints to the next stack available stack location.

PULS : pull registers from stack. Stack pointer is updated &
peints to the next stack available stack location.

Page 15

The order of pushing is from left to right, ie., push regl
first, then reg? eteq =g

The order of pulling is from right to left, ie., pull back
regn, and then regn-1 etc. .
Macro=instructions

Nesting is permitted in the following instructions.

5.7.1 MIFxx, MELSE and MENDIF Instructions
X%y 2, NiZi, DE, NIF

Z: D=0g

NZ: D<>0
DF: DF=1
NF: DF=@

EXAMPLE:

MIFZ

STR R4
MELSE

STR R5
MENDIF

NOTE: 1f D=@, store (D) into R4, otherwise, store (D)
into RS5.

5.7.2 MCASE, MOF vl....., MENDOF and MENDCASE Instructions

Example:
MCASE
MOE 1 : COMPARE (D) WITH 1, IF TRUE,
: NEXT STATEMENT , OTHERWISE,
: STATEMENT AFTER FIRST MENDOF
STR R3 : AFTER DOING THE INSTRUCTIONS
: INSIDE THE MOF LOOP, DO
: INSTRUCTIONS FOLLOW MENDCASE
MENDOF
MOF 4
STR RS
MENDOF
MENDCASE

Page 16

5.7.3 MLOOP, MLEAVE and MENDLOOP
EXAMPLE:

MLOOP
LDA R7
STR R8
DEC R9
GLO R9
BNZ S$+5

MLEAVE
LDXA
STR. R7

MENDLQOOQOP

NOTE : MLEAVE must be located between MLOOP and
MENDLOOP. The instuctions between MLOQOP and MENDLOOP

will be executed repeatedly wuntil the MLEAVE is
encocuntered.

Page 17

CHAPTER 6

DIRECTIVES

——— — ———————

Introduction

Assembler directive statements give the assembler
information that affects the assembly process, but do not
cause code to be generated.

Conditional Assembling

IF Statement

Sets the sense of conditional assembly. The operand follows
the statement determines assembling condition. 1If the
evaulated result of the operand 1is true, the current

assembling condition is maintained, otherwise the subseguent
statements will be skipped.

The operand can be any expression whose evaluated result 1is
in boolean form (truve or false).

ELSE Statement

Switches the sense of the current 1level of conditional
assembly; if the assembler is processing statement, it will
switch to sipping and vice versa.

ENDIF

Ends the conditional assembling of the nearest IF/ELSE or IF
statement (s) .

NOTE: I1F/ELSE/ENDIF or IF/ENDIF statements may be nested.
They may not be with labels.

GO label
Whenever the GO statement 1is encountered, the subseguent
statements will be skipped (not to be assembled). When the

specified label is encountered, the previous assembling
condition will be resumed.

Page 18

DS, EQU, END, LIST, NOLIST, ORG and PAGE Statement

DS

Declares storage.

Number of storage declared depends on the evaluated result
of its operand expression.

EQU

Assigns a value ¢to a label by evalvating its operand
expression. The label name must not have been wused
previously. EQU statements must have a label.

END

Indicates the end of the program. Its use is opticnal.

LIST

Tells the assembler to resume echoing the source code and
machine code, and thus cancels the effect of the NOLIST
statement.

NOLIST

Directs the assembler to cease echoing the source code and
machine code to the listing.

PAGE

Changed the current program counter to the starting point of
next page. For example, if the current pc=4@3@ (hex), after
the PAGE statement is encountered, pc is changed to 4190
(hex.).

ORG operand
Assigns a value to program counter by evaluating its operand

expression.

NOTE: DO NOT PLACE ANY INSTRUCTION ON THE SAME LINE THE PAGE
OR ORG STATEMENT LOACTED, OTHERWISE, THERE MAY BE LOGICAL
ERRORS IN THE PROCESS OF TRANSFORMING HEX FILE TO OBJECT
F1LE.

Page 19

CBAPTER 7

ASSEMBLER LISTING AND ERROR MESSAGES

o ———— —— G S T P S - ——————

The assembler listing format, by starting column, is

Column 1 to column 4 -- Address Field: displays the initial
valve of the program counter.

Column 6 to column 18-~ Machine code field: any code
generated by the statement is listed in this field. At most
6 bytes of machine code can be listed in one 1line., 1f G
option has been selected and more than 6 bytes of machine
code have been geanerated, the code will be 1listed on the
next dine,

Column 20 --Information field: the assembler display
statement status by printing a one-character symbol in this
column.,

i.e.

W-- warning: generated for label too long; or long branches
whose destination can be reached by a short
branch; or input text line tco long (more than
8@ characters in one line).

E-- error: indicates statements that have one or more
errors. Overrides the "W" symbols.

Column 21 to 24--Source line number: this 1s a sequence
number assigned by the assembler to each source statement
read, even if the line was not actually printed.

Column 25 == input field: the text read 1is printed out
in this field.

1f the line length is longer than 8@ character (or any value

given in an option W statement), the line will be truncated
on ‘the Tight.

page 20

Error Message

The assembler will print a brief error message for each
error it detects. The message are printed before the line in
error. Here is a summary of the assembler error messages.

1. BAD INSTRUCTION: the assembler did not recognize the
instruction mnemonic.

5. LABEL MISSING: A label is needed in the line.

3. PHASING ERROR: The label value which was generated in
pass 1 is different pass 2.

4. INVADID LABEL: The statement's label included an illegal
character or did not start with a letter.

5. REDEFINED NAME: The used as label more than once.

6. REGISTER ERROR: The operand expression which represented
a register number was at fault.

7. SYNTAX ERROR: Improper use of the nesting pseudo-
instruction,.

8. >255: The result of the expression was too large to fit
in the required byte.

9. OUT OF RANGE: The destination of the branch e teo far to
use a short branch.

1. DELIMITER ERROR: Inproper use of delimiter for DM
instruction or no delimiters used.

11. I/0 PORT NUMBER: Operand for OUT & INP is “at fault.

12. EXPRESSION ERROR: Error in the operand field was
encourted.

13. LOOPING ERROR: Error found in the uses of MLOOP, MLEAVE
and MENDLOOP.

14. MIF ERROR: Error found in the uses of MIF, MELSE and
MENDIF.

15. MCASE ERROR: Error found in the uses of MCASE, MOF,
MENDOF and MENDCASE.

Page 21

16. CONDITIONAL ASSEMBLE NODE TABLE FULL: Too much nesting
for the
conditicnal
assembling.

17. CONDITIONAL ASSEMBLER STACK FULL: Too much nesting.

18. NESTING PSEUDO NODE TABLE FULL: Too much nesting.

19. NESTING PSEUDO STACK FULL

2¢. CONDITIONAL ASSEMBLER NESTING ERROR

21. NO SUCH DEVICE: The device selected as the output device
does not exist.

22. DISK FULL: DISK MEDIUM FULL

23, INPUT LINE TOO LONG(TEXT INPUT)

24. INVALID DESTINATION NUMBER

25. INVALID NAME: Invalid file name has been input

26. NAME TOO LONG: Label name too long(in excess of ©
characters)

27 . WRONG INPUT TYPE: Input wrong information or wrong
input format in answering the
guestions displayed on screen before
the assembling can be proceeded.

58 . OPTIONS ERROR: Input the wrong information in answering
which options is selected.

59. WIDTH TOO LARGE: Width set by users greater than 132
3. INVALID NUMBER: Destination number error.

31. DIGIT BUFFER FULL, DIGIT TOO LARGE

32. NUMBER OVERFLOW

33. SYMBOL TABLE FULL: Too much label, the program is
aborted.

Page 22

34.
35«

36.
37«
38.
39
40 .

41.

EXPRESSION
EXPRESSION

EXPRESSION
EXPRESSION
EXPRESSION
EXPRESSION
EXPRESSION

EXPRESSION

ERR:
ERR:

ERR:

ERR:

ERR:

ERR:

ERR:

ERR:

MISSING OPERATOR (S)
MISSING BRACKET

MISSING OPERAND (S)

CANNOT BE DIVIDED BY ZERO
INVALID SYMBOL

UNDEFINED SYMBOL

INVALID CONSTANT

SYMBOL MISSING

Page 23

MOST SIGNIFICANT HEX DIGIT

APPENDIX

ASCI1I1 CODE TABLE

- ——— - —

A

@ 1 2 3 4 5 7
g | NUL DLE SP ') e P P
1 SOH DC1 ! :§ A Q q
2 STX DC2 " 2 B R r
3 ETX DC3 # 3 C S s
4 EQOT DC4 $ 4 D T &
5 ENQ NAK % 5 E U v
6 | ACK SYN & 6 F \Y v
7 BEL ETB / 7 G W w
8 BS CAN (8 H ¥ X
9 HT EM) g I Y Yy
A LF SUB * : 3 ¥ z
B VT ESC - ; K [{
€ FF FS : < 7 kY |
D CR GS - = M] }
E SO RS . > N T i
F S1 us / 2 0 o DEL
NOTES :

(1)
(2)

(3)

parity bit in most significant hex digit not included.

Characters in columns © and 1
are non-printing.

(as well as SP and DEL)

Model 33 Teletypewriter prints codes in columns & and 7

as if they were column 4 and 5 codes.

Page 24

APPENDIX B

Example Assembly Progam Listing

COMX 35/PC-1 ASSEMBLER V1.9 PAGE @91
peea ; @@l :TWO BYTES SUBTRACTION

gogg ; @882 :SUBTRACT $1234 FROM $4321

poga ; @803 :RESULT PRINT ON SCREEN

ggee ; pog4a

peoe ; @885 ::: REGISTER LABEL

geg2 ; ggge Sp EQU 2

goee ; g7

ggee ; PP@P8 ::: SUBROUTINE LABEL

310F ; PPEg9 OUTPUT EQU 32@FH

ap@e ; pe10

page ; P11l ::: MAIN PROGRAM

peeeg ; go12 ORG 5088H

5800 E2; @13 START SEX SP

5801 F821; gol4 LDI 21H

5083 FF34; ga1s SMI 34H :SUBTRACT LOW BYTE
5085 73; @a16 STXD :PUSH LOW RESULT

5006 F843; @gai17 LDI 43H

5008 7F12; Be18 SMBI 12H :SUBTRACT HIGH BYTE
500A D4320F; gp19 CALL OUTPUT :PRINT RESULT HIGH BYTE
580D 60F@; gB2o IRX ; LDX :PULL LOW RESULT
580F D4320F; pe21 CALL OUTPUT :PRINT RESULT LOW BYTE
5812 D5; ga22 EXIT :RETURN TO BASIC

5913 ; pe23 END

@3%88 ERROR(S)

GOPBP WARNING (S)

$P013 PPP19 PROGRAM BYTES GENERATED
S@P1B @027 BYTES USED FOR SYMBOL

Page 25

COMX LOADER MANUAL

By : Stanley Mak

Date : August 13, 1985

R & D dept.,

COMX World Operations Ltd.
Appro.ed by : Edmond Leung

TABLE OF CONTENT

l. Introduction Page
2. Operation Page
3. Working Principle Page
Appendix A - Loading file example Page
Appendix B - Merging file example Page

Appendix C - Error message Page

1.

INTRODUCTION

COMX Loader is a ultility which convert a text file
into a assembly file or program. Source file is the HEX
file generated by COMX 1802 Assembler or file with the same
format. Destination may be in form of machine codes filled
in RAM or assembly file written to disk.

COMX Loader occupied the memory from $5000 to $B2FF.
$5000-$9FFF is the write buffer. $A000-$ABFF is the read
buffer. Main program starts at $A900. If disk is selected
as destination, write buffer will be used. All data from
$5000 to $B2FF will be destroyed. If RAM is selected as
destination, write buffer will not be used. Memory from
$4400 to $9FFF can be used by user.

COMX Loader can be start run by DOSURUN the program
"LOADER" or CALL(BA900) after "LOADER" has been loaded.

Page 1

2'

OPERATION

Insert a disk containing the program "LOADER" into disk
drive and type "DOSURUN LOADERY. The following text will be
displayed :

COMX LOADER VERSION 1.0
COMX WORLD OPERATIONS LTD., 1985 (C)

SOURCE FILE NAME (FN,DR):
>

Key in file name of the source HEX file followed by a
comma and drive number. If no drive number is defined,
drive 1 will be selected. If the file does not exist, an

error message

®EEE TEPNSE SNDT . FOND

will be displayed and another file name should be entered.
If the file exists, another text will be displayed :

SELECT DESTINATION TYPE:
1. DISK 2.RAM 3.RAM & DISK
>

Key in a number to select destination type.
Difference among the destination types are as follow:
Type 1 : The generated codes will be written to disk and an
ASM file will be formed. The formed file will be

an ordinary assembly file. It can be 1loaded and
executed by DOS command "DOSLOAD" and "DOSURUN".

Type 2 : The generated codes will be directly filled into
RAM. No disk file will be formed.

Type 3 : The generated codes will first be filled into RAM
and then saved to disk. An ASM file is formed.

If destination type 1 or 3 is selected, the following
message will be displayed:

DESTINATION FILE NAME (FN,DR):
>

Key in the file name of the ASM file to be formed
followed by a comma and the drive number. If nao drive

number is defined, drive 1 will be selected. If the file
name alrady exists in the disk, an error message

¥¥x FILE ALREADY EXISTS

Page 2

will appear and another file name should be entered.

If destination type 1 is selected, the following
message will be display :

PROGRAM GAP BYTE (DEFAULT $FF):
>

Key in the hexadecimal gap byte code or hit "CR" for
$E€F & This gap byte is used to fill the program gaps (if
any) appeared in the program.

The convertion process will now start. If any error
occured during the process, error messages will be displayed
(see appendix C). If no error message is displayed, it means
that the convertion process has finished successfully.

However, if the program does not start at page
boundary, a warning message will be displayed.

If destination type 1 is selected, the warning message
will be as follow:

WARNING
PROGRAM NOT START AT PAGE BOUNDARY.
FILE FRONT($XX00-$XXYY) FILLED WITH $C4.

$XXYY is the program starting address and $XX00 is the
page boundary address just in front of the program. This
warning informs that COMX Loader has assigned the
destination file to start at page boundary ($XX00).
Locations between the page boundary and the program start
has been filled with $C4.

If destination type 3 is selected, the warning message
will be as follow :

PROGRAM NOT START AT PAGE BOUNDARY.

This warning informs that COMX Loader has start saved
the destination file at the page boundary just in front of
the program. Content of locations between the page boundary
and the program start has also been saved to disk.

Note : During entering file names and destination type, a
"CR" key instead of any input will abort the
program.

Page 3

3.

WORKING PRINCIPLE

Source file will be read into the read buffer. Text in
read buffer will be converted into machine codes.
Afterwards, the codes will be handled according to different
types of destination.

Destination type 1

The codes will be filled into the write buffer. If
program gap appeared, "gap bytes" will be filled until next
opcode appear. The "gap byte" code can be defined by the
user., When the write buffer is full or source file |is
complete, the codes will be written to disk. Since the
codes will not be filled into RAM,address range of the
program is not limited. However, due to the sequential
writting format, address overlapping (one instruction's
address smaller than or equal to the previous instruction's
address) is not allowed.

Destination type 2 :

The codes will be filled into RAM. They will be filled
according to their addresses. Therefore, address
overlapping is allowed and address range is limited to
$4400-$9FFF. Program gaps will not be filled.

Destination type 3 :

The codes will be filled into RAM according their
addresses., After all codes has been filled, they will be
saved to disk. Similar to type 2, address range is limited
to $4400-$9FFF and address overlapping is allowed. Program
gaps will not be filled but the content in gaps will be
saved to disk.

According to COMX DO0S, the lower byte of the starting
address of an assembly file must be $00. Therefore, if a
program does not start at page boundary ($XX00) and
destination type 1 or 3 has been selected, the following
process will be done :

Destination type 1 :

Addresses between page boundary and program start will
be filled with the instruction NOP ($C4). The program will
be start saved from the page boundary. A warning message
indicating the addresses which has been filled with NOP will
be displayed.

Destination type 3 :

A warning message will be displayed. NOP will not be

filled. The program will be start saved' at the page

Page 4

boundary in front of the program. In this case, the content
of the addresses between the page boundary and the program
start will also be saved.

Page 5

APPENDIX A

Loading file example

This example demostrates how to load a file. Source to
be loaded is a file called PROG.H in drive 1. Destination
will be a ASM file called PROG.C in drive 2.

PROG.H is a HEX file generated by COMX 1802 Assembler :

5010 FBOABS;
5013 FBOOAS;
5016 FBFF;
5018 FFO1;
SO01A 3A08;
501C 28883
SO1E 3A06;
5020 98;
5021 3A06;
5023 D5

5024

Example procedure

Note : Words underlined stand for text input.
Words in small letters are explanations.

READY
:DOSURUN, "LOADER" start run COMX Loader

COMX LOADER VERSION 1.0
COMX WORLD OPERATIONS LTD., 1985 (C)

SOURCE FILE NAME (FN,DR):
>PROG.H,1 input source file name

SELECT DESTINATION TYPE:
1.DISK 2.RAM 3.RAM & DISK

>1 select disk as dest
DESTINATION FILE NAME (FN,DR):

>PROG.C,2 input dest file name
WARNING process completed

PROGRAM NOT START AT PAGE BOUNDARY.
FILE FRONT($5000-$500F) FILLED WITH $C4.

READY
:DOSLOAD,"PROG.C"/2 load the dest file

——— i ———

Page 6

PROG.C 1is loaded into the
content is shown below

5000 C4 C4 C4 C4 C4 C4 C4 C4 Co
5010 F8 OA BB F8 00 AB F8 FF FF
5020 98 3A 06 D5 00 00 00 00 0O

memory $5000-$5023 and the

C4 C4 C4 C4 C4 C4 C4
01 3A 08 28 88 3A 06
00 00 00 00 00 00 0O

page 7

APPENDIX B

Merging file example

This example demonstrates how to merge three programs,
PROG1l, PROG2 and PROG3, into a program called CODE.

PROGl1, PROG2Z and PROG3 are three HEX files :

PROG1 : PROG2 : PROG3 :
5000 F861B8; 5100 E2; 6000 FBOABS;
5003 FB800AS; 5101 FBOA73; 6003 FBO0A8;
5006 08; 5104 D4320F; 6006 F8FF;
5007 D4320F; 5107 D42E42; 6008 FFO1;
500A D45100; 510A D46000; 600A 3A08;
500D D5; 510D 60F0; 600C 2888;
SO0E ; 510F FFO173; 600E 3A06;
6100 0B; 5112 3A04; 6010 98;
6101 ; 5114 D5; 6011 3A06;
5115 ; 6013 D5;
6014 ;

Use COMX Loader to load these files separately. Select
destination type 2 so that the programs can be loaded 1into
RAM. From the programs, the lowest and highest addresses
can be found as $5000 and $6100. Type
DOSSAVE,"CODE",H5000,M6100 to save the programs. The program
CODE will now contain the programs PROG1,PROG2 and PROG3.

Example procedure :

Note : Words underlined stand for text input.
Words in small letter are explanations.

READY _

:DOSURUN, "LOADER™ start run COMX Loader
COMX LOADER VERSION 1.0

COMX WORLD OPERATIONS LTD., 1985 (C)

SOURCE FILE NAME (FN,DR):

>PROG1,1 load first file
SELECT DESTINATION TYPE:

1.DISK 2.RAM 3.RAM & DISK

p s select load in RAM
READY
:DOSURUN, "LOADER" start run COMX Loader

COMX LOADER VERSION 1.0

Page 8

COMX WORLD OPERATIONS LTD., 1985 (C)

SOURCE FILE NAME (FN,DR):

>PROGZ,1 load second file
SELECT DESTINATION TYPE:

1.DISK 2. RAM 3. RAM & DISK

>2 select load in RAM
READY
:DOSURUN, "LOADER" start run COMX Loader

—————————— - ——

COMX LOADER VERSION 1.0
COMX WORLD OPERATIONS LTD., 1985 (C)

SOURCE FILE NAME (FN,DR):

>PROG3,1 load third file
SELECT DESTINATION TYPE:

1.DISK 2.RAM 3.RAM & DISK

>2 select load in RAM
READY
:DOSSAVE,"CODE",85000,86100 save merged program

Page 9

APPENDIX

Error messages

1.

2.

3-

4-

FILE NAME T0OO LONG

INCORRECT DRIVE NO.

FILE NOT FOUND
FILE ALREADY EXISTS

SOURCE FILE NOT HEX FILE

ADDRESS OVERLAPPED

ADDRESS NOT PERMITTED

File name exceeds 18
characters.

Drive number does not equal
to 1. or 2.

Source file can not be found.

Destination file name already
exists.

Format of source file not
identical to COMX 1802
Assembler HEX file format.

Address overlapping occured.

Address less then $4400 or
greater then $9FFF.

Page 10

